Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ginseng Res ; 48(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223830

RESUMO

Fresh ginseng is prone to spoilage due to its high moisture content. For long-term storage, most fresh ginsengs are dried to white ginseng (WG) or steamed for hours at high temperature/pressure and dried to form Korean Red ginseng (KRG). They are further processed for ginseng products when subjected to hot water extraction/concentration under pressure. These WG or KRG preparation processes affect ginsenoside compositions and also other ginseng components, probably during treatments like steaming and drying, to form diverse bioactive phospholipids. It is known that ginseng contains high amounts of gintonin lysophosphatidic acids (LPAs). LPAs are simple lipid-derived growth factors in animals and humans and act as exogenous ligands of six GTP-binding-protein coupled LPA receptor subtypes. LPAs play diverse roles ranging from brain development to hair growth in animals and humans. LPA-mediated signaling pathways involve various GTP-binding proteins to regulate downstream pathways like [Ca2+]i transient induction. Recent studies have shown that gintonin exhibits anti-Alzheimer's disease and anti-arthritis effects in vitro and in vivo mediated by gintonin LPAs, the active ingredients of gintonin, a ginseng-derived neurotrophin. However, little is known about how gintonin LPAs are formed in high amounts in ginseng compared to other herbs. This review introduces atypical or non-enzymatic pathways under the conversion of ginseng phospholipids into gintonin LPAs during steaming and extraction/concentration processes, which exert beneficial effects against degenerative diseases, including Alzheimer's disease and arthritis in animals and humans via LPA receptors.

2.
Emerg Infect Dis ; 29(11): 2275-2284, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37877548

RESUMO

SARS-CoV-2 induces illness and death in humans by causing systemic infections. Evidence suggests that SARS-CoV-2 can induce brain pathology in humans and other hosts. In this study, we used a canine transmission model to examine histopathologic changes in the brains of dogs infected with SARS-CoV-2. We observed substantial brain pathology in SARS-CoV-2-infected dogs, particularly involving blood-brain barrier damage resembling small vessel disease, including changes in tight junction proteins, reduced laminin levels, and decreased pericyte coverage. Furthermore, we detected phosphorylated tau, a marker of neurodegenerative disease, indicating a potential link between SARS-CoV-2-associated small vessel disease and neurodegeneration. Our findings of degenerative changes in the dog brain during SARS-CoV-2 infection emphasize the potential for transmission to other hosts and induction of similar signs and symptoms. The dynamic brain changes in dogs highlight that even asymptomatic individuals infected with SARS-CoV-2 may develop neuropathologic changes in the brain.


Assuntos
COVID-19 , Doenças Neurodegenerativas , Humanos , Animais , Cães , SARS-CoV-2 , COVID-19/veterinária , Encéfalo
3.
Nutrients ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299538

RESUMO

Ginseng is one of the traditional herbal medicines for tonic. Gintonin is a new material derived from white/red ginseng and its lysophosphatidic acids (LPAs) play as a ligand for G protein-coupled LPA receptors. Korean red ginseng marc (KRGM) is a by-product after the KRG processes. We developed a low-cost/high-efficiency method for KRGM gintonin production. We further studied the KRGM gintonin-mediated anti-skin aging effects under UVB exposure using human dermal fibroblasts (HDFs). KRGM gintonin yield is about 8%. KRGM gintonin contains a high amount of LPA C18:2, lysophosphatidylcholine (LPC), and phosphatidylcholine (PC), which is similar to white ginseng gintonin. KRGM gintonin induced [Ca2+]i transient via LPA1/3 receptors and increased cell viability/proliferation under UVB exposure. The underlying mechanisms of these results are associated with the antioxidant action of KRGM gintonin. KRGM gintonin attenuated UVB-induced cell senescence by inhibiting cellular ß-galactosidase overexpression and facilitated wound healing. These results indicate that KRGM can be a novel bioresource of KRGM gintonin, which can be industrially utilized as new material for skin nutrition and/or skin healthcare.


Assuntos
Panax , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Receptores Acoplados a Proteínas G , Nutrientes
4.
J Ginseng Res ; 47(3): 366-375, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37252285

RESUMO

Background: Ginseng contains three active components: ginsenosides, gintonin, and polysaccharides. After the separation of 1 of the 3 ingredient fractions, other fractions are usually discarded as waste. In this study, we developed a simple and effective method, called the ginpolin protocol, to separate gintonin-enriched fraction (GEF), ginseng polysaccharide fraction (GPF), and crude ginseng saponin fraction (cGSF). Methods: Dried ginseng (1 kg) was extracted using 70% ethanol (EtOH). The extract was water fractionated to obtain a water-insoluble precipitate (GEF). The upper layer after GEF separation was precipitated with 80% EtOH for GPF preparation, and the remaining upper layer was vacuum dried to obtain cGSF. Results: The yields of GEF, GPF, and cGSF were 14.8, 54.2, and 185.3 g, respectively, from 333 g EtOH extract. We quantified the active ingredients of 3 fractions: L-arginine, galacturonic acid, ginsenosides, glucuronic acid, lysophosphatidic acid (LPA), phosphatidic acid (PA), and polyphenols. The order of the LPA, PA, and polyphenol content was GEF > cGSF > GPF. The order of L-arginine and galacturonic acid was GPF >> GEF = cGSF. Interestingly, GEF contained a high amount of ginsenoside Rb1, whereas cGSF contained more ginsenoside Rg1. GEF and cGSF, but not GPF, induced intracellular [Ca2+]i transient with antiplatelet activity. The order of antioxidant activity was GPF > GEF = cGSF. Immunological activities (related to nitric oxide production, phagocytosis, and IL-6 and TNF-α release) were, in order, GPF > GEF = cGSF. The neuroprotective ability (against reactive oxygen species) order was GEF > cGSP > GPF. Conclusion: We developed a novel ginpolin protocol to isolate 3 fractions in batches and determined that each fraction has distinct biological effects.

5.
ACS Nano ; 17(4): 3610-3619, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36745820

RESUMO

Rapid, sensitive, simultaneous quantification of multiple biomarkers in point-of-care (POC) settings could improve the diagnosis and management of sepsis, a common, potentially life-threatening condition. Compared to high-end commercial analytical systems, POC systems are often limited by low sensitivity, limited multiplexing capability, or low throughput. Here, we report an ultrasensitive, multiplexed plasmonic sensing technology integrating chemifluorescence signal enhancement with plasmon-enhanced fluorescence detection. Using a portable imaging system, the dual chemical and plasmonic amplification enabled rapid analysis of multiple cytokine biomarkers in 1 h with sub-pg/mL sensitivities. Furthermore, we also developed a plasmonic sensing chip based on nanoparticle-spiked gold nanodimple structures fabricated by wafer-scale batch processes. We used the system to detect six cytokines directly from clinical plasma samples (n = 20) and showed 100% accuracy for sepsis detection. The described technology could be employed in rapid, ultrasensitive, multiplexed plasmonic sensing in POC settings for myriad clinical conditions.


Assuntos
Técnicas Biossensoriais , Sepse , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Biomarcadores/análise , Ouro/química , Citocinas , Sepse/diagnóstico , Técnicas Biossensoriais/métodos
6.
Phytomedicine ; 112: 154569, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842217

RESUMO

BACKGROUND: Bornyl acetate (BA), a chemical component of essential oil in the Pinus family, has yet to be actively studies in terms of its therapeutic effect on numerous diseases, including autoimmune diseases. PURPOSE: This study aimed to investigate the pharmacological effects and molecular mechanisms of BA on myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) mice in an animal model of multiple sclerosis (MS), a representative autoimmune disease in central nervous system. METHODS: BA (100, 200, or 400 mg/kg) was orally treated to EAE mice once daily for 30 days after immunization for the behavioral test and for the 16th-18th days for the histopathological and molecular analyses, from the onset stage (8th day) of EAE symptoms. RESULTS: BA mitigated behavioral dysfunction (motor disability) and demyelination in the spinal cord that were associated with the down-regulation of representative pro-inflammatory cytokines (interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha), enzymes (cyclooxygenase-2 and inducible nitric oxide synthase), and chemokines (monocyte chemotactic protein-1, macrophage inflammatory protein-1 alpha, and regulated on activation), and decreased infiltration of microglia (CD11b+/CD45+(low)) and macrophages (CD11b+/CD45+(high)). The anti-inflammatory effect of BA was related to the inhibition of mitogen-activated protein kinases and nuclear factor-kappa B pathways. BA also reduced the recruitment/infiltration rates of CD4+ T, Th1, and Th17 cells into the spinal cords of EAE mice, which was related to reduced blood-spinal cord barrier (BSCB) disruption. CONCLUSION: These findings strongly suggest that BA may alleviate EAE due to its anti-inflammatory and BSCB protective activities. This indicates that BA is a potential therapeutic agent for treating autoimmune demyelinating diseases including MS.


Assuntos
Pessoas com Deficiência , Encefalomielite Autoimune Experimental , Transtornos Motores , Esclerose Múltipla , Fármacos Neuroprotetores , Camundongos , Animais , Humanos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Barreira Hematoencefálica , Transtornos Motores/complicações , Transtornos Motores/tratamento farmacológico , Transtornos Motores/patologia , Esclerose Múltipla/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
7.
Sci Rep ; 13(1): 732, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639689

RESUMO

The recent advances in deep learning-based approaches hold great promise for unravelling biological mechanisms, discovering biomarkers, and predicting gene function. Here, we deployed a deep generative model for simulating the molecular progression of tauopathy and dissecting its early features. We applied generative adversarial networks (GANs) for bulk RNA-seq analysis in a mouse model of tauopathy (TPR50-P301S). The union set of differentially expressed genes from four comparisons (two phenotypes with two time points) was used as input training data. We devised four-way transition curves for a virtual simulation of disease progression, clustered and grouped the curves by patterns, and identified eight distinct pattern groups showing different biological features from Gene Ontology enrichment analyses. Genes that were upregulated in early tauopathy were associated with vasculature development, and these changes preceded immune responses. We confirmed significant disease-associated differences in the public human data for the genes of the different pattern groups. Validation with weighted gene co-expression network analysis suggested that our GAN-based approach can be used to detect distinct patterns of early molecular changes during disease progression, which may be extremely difficult in in vivo experiments. The generative model is a valid systematic approach for exploring the sequential cascades of mechanisms and targeting early molecular events related to dementia.


Assuntos
Tauopatias , Camundongos , Animais , Humanos , Simulação por Computador , Tauopatias/genética , Perfilação da Expressão Gênica , RNA-Seq , Progressão da Doença
8.
Fluids Barriers CNS ; 19(1): 70, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068542

RESUMO

Neurovascular coupling is a precise mechanism that induces increased blood flow to activated brain regions, thereby providing oxygen and glucose. In this study, we hypothesized that N-methyl-D-aspartate (NMDA) receptor signaling, the most well characterized neurotransmitter signaling system which regulates delivery of essential molecules through the blood-brain barrier (BBB). Upon application of NMDA in both in vitro and in vivo models, increased delivery of bioactive molecules that was mediated through modulation of molecules involved in molecular delivery, including clathrin and caveolin were observed. Also, NMDA activation induced structural changes in the BBB and increased transcellular permeability that showed regional heterogeneity in its responses. Moreover, NMDA receptor activation increased endosomal trafficking and facilitated inactivation of lysosomal pathways and consequently increased molecular delivery mediated by activation of calmodulin-dependent protein kinase II (CaMKII) and RhoA/protein kinase C (PKC). Subsequent in vivo experiments using mice specifically lacking NMDA receptor subunit 1 in endothelial cells showed decreased neuronal density in the brain cortex, suggesting that a deficiency in NMDA receptor signaling in brain endothelial cells induces neuronal losses. Together, these results highlight the importance of NMDA-receptor-mediated signaling in the regulation of BBB permeability that surprisingly also affected CD31 staining.


Assuntos
N-Metilaspartato , Receptores de N-Metil-D-Aspartato , Animais , Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Endoteliais/metabolismo , Camundongos , N-Metilaspartato/farmacologia , Permeabilidade , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Mol Neurobiol ; 59(7): 4315-4333, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35508867

RESUMO

Among the components of the blood-brain barrier (BBB), endothelial cells (ECs) play an important role in supplying limited materials, especially glucose, to the brain. However, the mechanism by which glucose is metabolized in brain ECs is still elusive. To address this topic, we assessed the metabolic signature of glucose utilization using live-cell metabolic assays and liquid chromatography-tandem mass spectrometry metabolomic analysis. We found that brain ECs are highly dependent on aerobic glycolysis, generating lactate as its final product with minimal consumption of glucose. Glucose treatment decreased the oxygen consumption rate in a dose-dependent manner, indicating the Crabtree effect. Moreover, when glycolysis was inhibited, brain ECs showed impaired permeability to molecules utilizing transcellular pathway. In addition, we found that the blockade of glycolysis in mouse brain with 2-deoxyglucose administration resulted in decreased transcellular permeability of the BBB. In conclusion, utilizing glycolysis in brain ECs has critical roles in the maintenance and permeability of the BBB. Overall, we could conclude that brain ECs are highly glycolytic, and their energy can be used to maintain the transcellular permeability of the BBB.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Glicólise , Camundongos , Permeabilidade
10.
J Ginseng Res ; 46(3): 348-356, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600777

RESUMO

Background: Gintonin is a ginseng-derived exogenous G-protein-coupled lysophosphatidic acid (LPA) receptor ligand. Gintonin exerts its neuronal and non-neuronal in vitro and in vivo effects through LPA receptor subtypes. However, it is unknown whether gintonin can bind to the plasma membrane of cells and can transactivate the epidermal growth factor (EGF) receptor. In the present study, we examined whether gintonin-biotin conjugates directly bound to LPA receptors and transactivated the EGF receptor. Methods: We designed gintonin-biotin conjugates through gintonin biotinylation and examined whether gintonin-biotin conjugate binding sites co-localized with the LPA receptor subtype binding sites. We further examined whether gintonin-biotin transactivated the EGF receptor via LPA receptor regulation via phosphor-EGF and cell migration assays. Results: Gintonin-biotin conjugates elicit [Ca2+]i transient similar to that observed with unbiotinylated gintonin in cultured PC3 cells, suggesting that biotinylation does not affect physiological activity of gintonin. We proved that gintonin-biotin conjugate binding sites co-localized with the LPA1/6 receptor binding sites. Gintonin-biotin binding to the LPA1 receptor transactivates the epidermal growth factor (EGF) receptor through phosphorylation, while the LPA1/3 receptor antagonist, Ki16425, blocked phosphorylation of the EGF receptor. Additionally, an EGF receptor inhibitor AG1478 blocked gintonin-biotin conjugate-mediated cell migration. Conclusions: We observed the binding between ginseng-derived gintonin and the plasma membrane target proteins corresponding to the LPA1/6 receptor subtypes. Moreover, gintonin transactivated EGF receptors via LPA receptor regulation. Our results suggest that gintonin directly binds to the LPA receptor subtypes and transactivates the EGF receptor. It may explain the molecular basis of ginseng physiology/pharmacology in biological systems.

11.
Br J Pharmacol ; 179(5): 998-1016, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34524687

RESUMO

BACKGROUND AND PURPOSE: There is a scarcity of information regarding the role of prothrombin kringle-2 (pKr-2), which can be generated by active thrombin, in hippocampal neurodegeneration and Alzheimer's disease (AD). EXPERIMENTAL APPROACH: To assess the role of pKr-2 in association with the neurotoxic symptoms of AD, we determined pKr-2 protein levels in post-mortem hippocampal tissues of patients with AD and the hippocampi of five familial AD (5XFAD) mice compared with those of age-matched controls and wild-type (WT) mice, respectively. In addition, we investigated whether the hippocampal neurodegeneration and object memory impairments shown in 5XFAD mice were mediated by changes to pKr-2 up-regulation. KEY RESULTS: Our results demonstrated that pKr-2 was up-regulated in the hippocampi of patients with AD and 5XFAD mice, but was not associated with amyloid-ß aggregation in 5XFAD mice. The up-regulation of pKr-2 expression was inhibited by preservation of the blood-brain barrier (BBB) via addition of caffeine to their water supply or by treatment with rivaroxaban, an inhibitor of factor Xa that is associated with thrombin production. Moreover, the prevention of up-regulation of pKr-2 expression reduced neurotoxic symptoms, such as hippocampal neurodegeneration and object recognition decline due to neurotoxic inflammatory responses in 5XFAD mice. CONCLUSION AND IMPLICATIONS: We identified a novel pathological mechanism of AD mediated by abnormal accumulation of pKr-2, which functions as an important pathogenic factor in the adult brain via blood brain barrier (BBB) breakdown. Thus, pKr-2 represents a novel target for AD therapeutic strategies and those for related conditions.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Kringles , Camundongos , Camundongos Transgênicos , Protrombina/metabolismo , Protrombina/uso terapêutico , Trombina
12.
Viruses ; 13(10)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34696455

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease (COVID-19), is currently infecting millions of people worldwide and is causing drastic changes in people's lives. Recent studies have shown that neurological symptoms are a major issue for people infected with SARS-CoV-2. However, the mechanism through which the pathological effects emerge is still unclear. Brain endothelial cells (ECs), one of the components of the blood-brain barrier, are a major hurdle for the entry of pathogenic or infectious agents into the brain. They strongly express angiotensin converting enzyme 2 (ACE2) for its normal physiological function, which is also well-known to be an opportunistic receptor for SARS-CoV-2 spike protein, facilitating their entry into host cells. First, we identified rapid internalization of the receptor-binding domain (RBD) S1 domain (S1) and active trimer (Trimer) of SARS-CoV-2 spike protein through ACE2 in brain ECs. Moreover, internalized S1 increased Rab5, an early endosomal marker while Trimer decreased Rab5 in the brain ECs. Similarly, the permeability of transferrin and dextran was increased in S1 treatment but decreased in Trimer, respectively. Furthermore, S1 and Trimer both induced mitochondrial damage including functional deficits in mitochondrial respiration. Overall, this study shows that SARS-CoV-2 itself has toxic effects on the brain ECs including defective molecular delivery and metabolic function, suggesting a potential pathological mechanism to induce neurological signs in the brain.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , COVID-19/patologia , Células Endoteliais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Células Endoteliais/virologia , Humanos , Camundongos , Mitocôndrias/metabolismo , Domínios Proteicos , SARS-CoV-2/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
13.
Polymers (Basel) ; 13(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200831

RESUMO

This work reports the self-organization of dimple nanostructures on a polyethylene naphthalate (PEN) surface where an Ar ion beam was irradiated at an ion energy of 600 eV. The peak-to-peak roughness and diameter of dimple nanostructures were 29.1~53.4 nm and 63.4~77.6 nm, respectively. The electron energy loss spectrum at the peaks and troughs of dimples showed similar C=C, C=O, and O=CH bonding statuses. In addition, wide-angle X-ray scattering showed that Ar ion beam irradiation did not induce crystallization of the PEN surface. That meant that the self-organization on the PEN surface could be due to the ion-induced surface instability of the amorphous layer and not due to the partial crystallinity differences of the peaks and valleys. A nonlinear continuum model described surface instability due to Ar ion-induced sputtering. The Kuramoto-Sivashinsky model reproduced the dimple morphologies numerically, which was similar to the experimentally observed dimple patterns. This preliminary validation showed the possibility that the continuum equation used for metal and semiconductor surfaces could be applied to polymer surfaces where ion beam sputtering occurred.

14.
J Ginseng Res ; 45(3): 390-400, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025132

RESUMO

BACKGROUND: We recently showed that gintonin, an active ginseng ingredient, exhibits antibrain neurodegenerative disease effects including multiple target mechanisms such as antioxidative stress and antiinflammation via the lysophosphatidic acid (LPA) receptors. Amyotrophic lateral sclerosis (ALS) is a spinal disease characterized by neurodegenerative changes in motor neurons with subsequent skeletal muscle paralysis and death. However, pathophysiological mechanisms of ALS are still elusive, and therapeutic drugs have not yet been developed. We investigate the putative alleviating effects of gintonin in ALS. METHODS: The G93A-SOD1 transgenic mouse ALS model was used. Gintonin (50 or 100 mg/kg/day, p.o.) administration started from week seven. We performed histological analyses, immunoblot assays, and behavioral tests. RESULTS: Gintonin extended mouse survival and relieved motor dysfunctions. Histological analyses of spinal cords revealed that gintonin increased the survival of motor neurons, expression of brain-derived neurotrophic factors, choline acetyltransferase, NeuN, and Nissl bodies compared with the vehicle control. Gintonin attenuated elevated spinal NAD(P) quinone oxidoreductase 1 expression and decreased oxidative stress-related ferritin, ionized calcium-binding adapter molecule 1-immunoreactive microglia, S100ß-immunoreactive astrocyte, and Olig2-immunoreactive oligodendrocytes compared with the control vehicle. Interestingly, we found that the spinal LPA1 receptor level was decreased, whereas gintonin treatment restored decreased LPA1 receptor expression levels in the G93A-SOD1 transgenic mouse, thereby attenuating neurological symptoms and histological deficits. CONCLUSION: Gintonin-mediated symptomatic improvements of ALS might be associated with the attenuations of neuronal loss and oxidative stress via the spinal LPA1 receptor regulations. The present results suggest that the spinal LPA1 receptor is engaged in ALS, and gintonin may be useful for relieving ALS symptoms.

15.
J Ginseng Res ; 45(3): 401-407, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025133

RESUMO

BACKGROUND: Gintonin is an exogenous ginseng-derived G-protein-coupled lysophosphatidic acid (LPA) receptor ligand. LPA induces in vitro morphological changes and migration through neuronal LPA1 receptor. Recently, we reported that systemic administration of gintonin increases blood-brain barrier (BBB) permeability via the paracellular pathway and its binding to brain neurons. However, little is known about the influences of gintonin on in vivo neuron morphology and migration in the brain. MATERIALS AND METHODS: We examined the effects of gintonin on in vitro migration and morphology using primary hippocampal neural precursor cells (hNPC) and in vivo effects of gintonin on adult brain neurons using real time microscopic analysis and immunohistochemical analysis to observe the morphological and locational changes induced by gintonin treatment. RESULTS: We found that treating hNPCs with gintonin induced morphological changes with a cell rounding following cell aggregation and return to individual neurons with time relapses. However, the in vitro effects of gintonin on hNPCs were blocked by the LPA1/3 receptor antagonist, Ki16425, and Rho kinase inhibitor, Y27632. We also examined the in vivo effects of gintonin on the morphological changes and migration of neurons in adult mouse brains using anti-NeuN and -neurofilament H antibodies. We found that acute intravenous administration of gintonin induced morphological and migrational changes in brain neurons. Gintonin induced some migrations of neurons with shortened neurofilament H in the cortex. The in vivo effects of gintonin were also blocked by Ki16425. CONCLUSION: The present report raises the possibility that gintonin could enter the brain and exert its influences on the migration and morphology of adult mouse brain neurons and possibly explains the therapeutic effects of neurological diseases behind the gintonin administration.

16.
Polymers (Basel) ; 13(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922136

RESUMO

Face masks will be used to prevent pandemic recurrence and outbreaks of mutant SARS-CoV-2 strains until mass immunity is confirmed. The polypropylene (PP) filter is a representative disposable mask material that traps virus-containing bioaerosols, preventing secondary transmission. In this study, a copper thin film (20 nm) was deposited via vacuum coating on a spunbond PP filter surrounding a KF94 face mask to provide additional protection and lower the risk of secondary transmission. Film adhesion was improved using oxygen ion beam pretreatment, resulting in cuprous oxide formation on the PP fiber without structural deformation. The copper-coated mask exhibited filtration efficiencies of 95.1 ± 1.32% and 91.6 ± 0.83% for NaCl and paraffin oil particles, respectively. SARS-CoV-2 inactivation was evaluated by transferring virus-containing media onto the copper-coated PP filters and subsequently adding Vero cells. Infection was verified using real-time polymerase chain reaction and immunochemical staining. Vero cells added after contact with the copper-coated mask did not express the RNA-dependent RNA polymerase and envelope genes of SARS-CoV-2. The SARS-CoV-2 nucleocapsid immunofluorescence results indicated a reduction in the amount of virus of more than 75%. Therefore, copper-coated antiviral PP filters could be key materials in personal protective equipment, as well as in air-conditioning systems.

17.
Ageing Res Rev ; 68: 101333, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33774194

RESUMO

The responses of central nervous system (CNS) cells such as neurons and glia in neurodegenerative diseases (NDs) suggest that regulation of neuronal and glial functions could be a strategy for ND prevention and/or treatment. However, attempts to develop such therapeutics for NDs have been hindered by the challenge of blood-brain barrier (BBB) permeability and continued constitutive neuronal loss. These limitations indicate the need for additional perspectives for the prevention/treatment of NDs. In particular, the disruption of the blood-brain barrier (BBB) that accompanies NDs allows brain infiltration by peripheral factors, which may stimulate innate immune responses involved in the progression of neurodegeneration. The accumulation of blood factors like thrombin, fibrinogen, c-reactive protein (CRP) and complement components in the brain has been observed in NDs and may activate the innate immune system in the CNS. Thus, strengthening the integrity of the BBB may enhance its protective role to attenuate ND progression and functional loss. In this review, we describe the innate immune system in the CNS and the contribution of blood factors to the role of the CNS immune system in neurodegeneration and neuroprotection.


Assuntos
Barreira Hematoencefálica , Doenças Neurodegenerativas , Encéfalo , Sistema Nervoso Central , Humanos , Neuroglia
18.
Integr Med Res ; 10(1): 100450, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32817818

RESUMO

BACKGROUND: A dramatic increase in aging populations and low birth rates rapidly drive aging societies and increase aging-associated neurodegenerative diseases. However, functional food or medicinal formulations to prevent geriatric brain disorders are not readily available. Panax ginseng is a candidate, since ginseng has long-been consumed as a rejuvenating agent. However, the underlying molecular mechanisms and the components of ginseng that are responsible for brain rejuvenation and human longevity are unknown. Accumulating evidence shows that gintonin is a candidate for the anti-aging ingredient of ginseng, especially in brain senescence. METHODS: Gintonin, a glycolipoprotein complex, contains three lipid-derived G protein-coupled receptor ligands: lysophosphatidic acids (LPAs), lysophosphatidylinositols (LPIs), and linoleic acid (LA). LPA, LPI, and LA act on six LPA receptor subtypes, GPR55, and GPR40, respectively. These G protein-coupled receptors are distributed within the nervous and non-nervous systems of the human body. RESULTS: Gintonin-enriched fraction (GEF) exhibits anti-brain senescence and effects against disorders such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). Oral administration of gintonin in animal models of d-galactose-induced brain aging, AD, HD, and PD restored cognitive and motor functions. The underlying molecular mechanisms of gintonin-mediated anti-brain aging and anti-neurodegenerative diseases include neurogenesis, autophagy stimulation, anti-apoptosis, anti-oxidative stress, and anti-inflammatory activities. This review describes the characteristics of gintonin and GEF, and how gintonin exerts its effects on brain aging and brain associated-neurodegenerative diseases. CONCLUSION: Finally, we describe how GEF can be applied to improve the quality of life of senior citizens in aging societies.

19.
Biosens Bioelectron ; 167: 112496, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818752

RESUMO

Surface-enhanced Raman scattering (SERS)-based aptasensors display high sensitivity for influenza A/H1N1 virus detection but improved signal reproducibility is required. Therefore, in this study, we fabricated a three-dimensional (3D) nano-popcorn plasmonic substrate using the surface energy difference between a perfluorodecanethiol (PFDT) spacer and the Au layer. This energy difference led to Au nanoparticle self-assembly; neighboring nanoparticles then created multiple hotspots on the substrate. The localized surface plasmon effects at the hot spots dramatically enhanced the incident field. Quantitative evaluation of A/H1N1 virus was achieved using the decrease of Raman peak intensity resulting from the release of Cy3-labeled aptamer DNAs from nano-popcorn substrate surfaces via the interaction between the aptamer DNA and A/H1N1 virus. The use of a Raman imaging technique involving the fast mapping of all pixel points enabled the reproducible quantification of A/H1N1 virus on nano-popcorn substrates. Average ensemble effects obtained by averaging all randomly distributed hot spots mapped on the substrate made it possible to reliably quantify target viruses. The SERS-based imaging aptasensor platform proposed in this work overcomes the issues inherent in conventional approaches (the time-consuming and labor-intensiveness of RT-PCR and low sensitivity and quantitative analysis limits of lateral flow assay kits). Our SERS-based assay for detecting A/H1N1 virus had an estimated limit of detection of 97 PFU mL-1 (approximately three orders of magnitude more sensitive than that determined by the enzyme-linked immunosorbent assay) and the approximate assay time was estimated to be 20 min. Thus, this approach provides an ultrasensitive, reliable platform for detecting viral pathogens.


Assuntos
Técnicas Biossensoriais , Vírus da Influenza A Subtipo H1N1 , Nanopartículas Metálicas , Ouro , Reprodutibilidade dos Testes , Análise Espectral Raman
20.
Int J Mol Sci ; 20(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31405033

RESUMO

Secretory proteins play important roles in the cross-talk of individual functional units, including cells. Since secretory proteins are essential for signal transduction, they are closely related with disease development, including metabolic and neural diseases. In metabolic diseases, adipokines, myokines, and hepatokines are secreted from respective organs under specific environmental conditions, and play roles in glucose homeostasis, angiogenesis, and inflammation. In neural diseases, astrocytes and microglia cells secrete cytokines and chemokines that play roles in neurotoxic and neuroprotective responses. Mass spectrometry-based secretome profiling is a powerful strategy to identify and characterize secretory proteins. This strategy involves stepwise processes such as the collection of conditioned medium (CM) containing secretome proteins and concentration of the CM, peptide preparation, mass analysis, database search, and filtering of secretory proteins; each step requires certain conditions to obtain reliable results. Proteomic analysis of extracellular vesicles has become a new research focus for understanding the additional extracellular functions of intracellular proteins. Here, we provide a review of the insights obtained from secretome analyses with regard to disease mechanisms, and highlight the future prospects of this technology. Continued research in this field is expected to provide valuable information on cell-to-cell communication and uncover new pathological mechanisms.


Assuntos
Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Proteômica/métodos , Animais , Cromatografia Líquida/métodos , Vesículas Extracelulares/química , Humanos , Doenças Metabólicas/metabolismo , Doenças do Sistema Nervoso/metabolismo , Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Doenças Vasculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...